陳昌繁
摘要:高中數學作為一門實用性學科,學生在學習探究中經常會遇到一些邏輯思維方面的問題,需要學生從不同角度來思考、解決。但也因為高中數學知識具有一定的抽象性,所以,為了將原本抽象、復雜的知識以更形象、生動的形式呈現出來,以此來強化學生數學思維能力培養,為學生數學核心素養發展奠定良好基礎,應充分重視起數形結合思想方法的應用研究。
關鍵詞:高中數學;數形結合;應用研究
數形結合思想方法簡單來講,就是通過對數量、圖形之間的關系做出準確把握與靈活運用,來將原本抽象、復雜的數學語言轉化成簡單易懂的數學圖像,讓學生在直觀觀看與多角度分析過程中高效解決數學問題。這一思想方法在高中數學教學中的恰當運用,不僅能夠幫助學生降低學習難度,也能夠幫助學生高效、準確地解決各類問題,積累更豐富、多樣化的解題思路方法,取得更理想的教學成果,為學生今后的學習發展奠定良好基礎。
一、數形結合思想方法
不論是在哪一階段的數學教學中,數形結合思想具有的應用價值都是不容忽視的。尤其是高中數學,其教學內容主要就是由數、形這兩部分組成。其中,數是對數量關系的表示,而形則是空間圖像的代表。而數形結合,就是將數量關系、空間圖像相互轉換,以此來對數學知識規律特點做出細致透徹的分析、總結,將其中涉及的數學知識更直觀、具體、形象的呈現出來。作為一種較為特殊的數學語言,數形結合思想方法具有化繁為簡的優勢,不僅與高中生認知特點相符合,也能夠給其數學思維能力,以及分析問題、解決問題能力的進一步發展創造良好條件。因此,在實際授課中,數學教師若能夠有效滲透數形結合思想方法,引導學生對數形轉化方式的靈活掌握,既可以幫助學生高效、準確地解答數量關系、空間圖形兩者之間相互轉換的問題,也可以幫助學生將問題中的圖像、數量關系有效轉化成與之相對應的、相對簡潔易懂的數學語言。這樣既可以幫助學生降低數學知識學習難度,高效解答各類習題,也能夠給學生數學核心素養的進一步發展奠定良好基礎。
二、數形結合思想方法的應用策略
(一)以數化形
作為數形結合思想方法中引用較為廣泛的一種方式,以數化形主要指的就是通過一些比較簡單的直觀圖形來簡化展示原本復雜的數學符號,以此來幫助學生降低學習難度。同時,對較為抽象的高中數學知識來講,通過以數化形的巧妙引用也可以幫助學生更輕松、高效地理解、掌握所學知識,尋找到不同的解題方法,為學生學習效果與效率的提升帶來積極影響。
例如,在函數教學中,教師就可以通過以數化形的方式,引用圖像來幫助學生透徹理解函數性質、定義,使得學生在解題中可以做到對相關知識點的準確、靈活引用。例如,在講解“三角函數圖像與性質”的相關知識點時,就可以通過圖像的恰當引用來幫助學生透徹理解函數知識點,實現對方程跟計算方法的靈活掌握,促進教學質量的不斷提升。通過繪制函數圖像的方式來將一些比較抽象的函數問題以簡單、直觀的圖像呈現出來。然后,通過觀察函數圖像來總結函數規律、性質,進而使得學生能夠實現對函數相關知識點的準確、高效掌握,這也是以數化形的直觀體現。
(二)以形化數
以形化數主要指的是在數學教學中,將圖形合理轉化成相應的運算符號,以此來為學生理解、掌握一些數學幾何圖像提供一定便捷。且在此基礎上,學生在解決幾何圖形問題過程中,也能夠積累更新穎、多樣化的解題思路。在高中數學教學中,通過以形化數的靈活引用,既有助于優化教學環節與成果,也能夠給學生思維發展帶來積極影響。
例如,在講解“圓與方程”的相關知識點時,就可以將以形化數這一思想方法引入其中,引導學生在學習探究中,通過公共點個數、數量之間關系的充分利用來判斷圓與直線之間的關系。這樣學生在靈活引用直線與圓位置關系判斷方法的過程中,數學學習能力也能夠得到進一步提升。另外,在講解幾何知識過程中,若能夠實現對以形化數思想方法的靈活運用,學生也能夠實現對問題本質的透徹理解。這樣既可以掌握更多解題思路方法,也能夠輕松地總結、理解數學知識的規律、性質,為之后的數學學習發展奠定良好基礎。
(三)數形互化
在高中數學教學中,數形結合思想方法的應用,除了要實現對以形化數、以數化形的熟練掌握之外,還要做到能夠準確、高效地解決一些數學問題,實現對數形互化學習方法的靈活掌握,通過靈活轉換數字、圖像來全面激活學生數學思維,為學生在之后的數學學習、解題中做到舉一反三、觸類旁通帶來積極影響,給學生數學核心素養的進一步發展奠定良好基礎。為此,在實際授課中,教師應引導學生思考、把握數、形之間的聯系,且可以做到準確、靈活轉化,以此來促進學生綜合學習能力的不斷提升。
例如,在帶領學生學習三角函數模塊時,就要引導學生準確把握數、形之間的相互轉化。這樣學生在學習中就不會將自己對cos、sin以及tan等函數的印象局限在知識點上。在之后再遇到涉及這一知識點的相關問題時,學生會馬上聯想到三個函數圖像,以此來確保學生能夠對所學知識產生透徹理解,為之后的靈活引用奠定良好基礎。另外,在為學生呈現函數圖像時,學生也會快速、準確地將圖中相應的函數數據讀出來,之后再得出完整的函數表達式。
三、結語
綜上所述,在高中數學教學中,通過培養學生掌握正確的數學學習思維方法,既可以幫助學生降低學習難度,促進其學習效果、解題效率的顯著提升。同時,也能夠給學生正確數學學習觀念、思維創造能力的形成發展帶來積極影響。因此,在實際授課中,為了確保學生能夠對所學知識有更直觀的理解,真正做到熟練掌握,為之后的靈活運用奠定良好基礎,廣大高中數學教師應充分重視起數形結合思想方法的應用研究,以此來構建更生動、高效的數學課堂。
參考文獻:
[1]陳宏科.數形結合思想方法在高中數學教學與解題中的應用方法研究[J].考試周刊,2020(39):53-54.
[2]張會東.數形結合思想方法在高中數學教學中的應用分析[J].科學咨詢,2021(16):118.