999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

數學教學思維導向下“橢圓的標準方程”教學設計研究

2024-12-31 00:00:00趙榮榮楊孝斌鄒耀飄
數學之友 2024年9期
關鍵詞:教學設計

摘" 要:本文結合數學學科特點和高中數學教學實際,將數學教學思維導向理念融入高中數學教學中,并以“橢圓的標準方程”一課為例,探討思維導向下的高中數學教學設計,以實現對學生數學思維過程的導向、數學探究活動的啟發,引領學生重走數學發現之路.

關鍵詞:思維導向;橢圓的標準方程;教學設計

基金項目:2023年貴州省高等學校教學內容和課程體系改革項目——課程思政視域下《數學史與數學文化》教學內容與教學方法改革研究.

教師是學生數學學習的組織者、引導者與合作者,數學學習過程中,教師對學生的數學思維發展起著啟發、引領和導向的作用.結合數學學科特點和高中數學教學實際,教師應在數學教學中重視對學生的思維導向,促使學生深刻感悟數學家探索與發現問題的歷程,學會用數學思維去發現問題、提出問題、分析問題、解決問題,引領學生重走數學發現之路.

1" 數學教學思維導向概述

數學教學思維導向的基本內涵是數學教師在數學教學中,以數學知識為載體,通過對學生的數學思維活動的啟發和引導,發展學生的數學思維能力和一般思維能力,養成科學思維的習慣,形成初步的數學研究能力和科學研究能力.思維導向意義下的數學教學,具有情境設計的指向性、教學過程的探究性、教學語言的啟發性和教學內容的思想性等基本特征.

數學教學思維導向要求教師對學生進行啟發,主要是從思維方式、思想方法等方面進行引領和導向.其基本方式是通過教師對數學教學內容進行教學法加工和方法論重建,利用數學教學的啟發性提示語對學生的數學思維活動進行啟發和引導.

在數學教學思維導向過程中,數學教師應堅持問題驅動、分層提示、方法滲透、回顧反思等思維導向原則,并通過展現數學知識的發展歷程、揭示數學概念本質、暴露數學活動的思維過程、構建數學知識的結構框圖等思維導向策略,實現對學生數學思維過程和數學探究活動的啟發和引導,引領學生重走數學的發現之路,經歷數學家在提出數學問題、發現數學結論中的數學思維和科學思維的“關鍵性步子”.[1]

思維導向的理念滲入了高中數學教學的各個環節,為抓準數學課堂教學的關鍵節點,促進師生深入了解數學問題的本質,實現數學思維的發展提供了理論指引.高中數學教學離不開思維導向理念的引領,否則數學的課堂將變得毫無生機,無法有效提升數學思維的廣度、深度與靈活度.數學教學思維導向理念實質地滲入到高中數學教學中,潛移默化地指引學生在探究、發現、試錯、糾偏等數學思維過程中逐步走向更廣闊、更深遠的數學世界.

2" 數學教學思維導向理論對“橢圓的標準方程”的教學啟示

基于以上對數學教學思維導向理念的介紹,結合人教A版《普通高中教科書數學選擇性必修第一冊》中“橢圓的標準方程”一課的實際情況,分析數學教學思維導向對這節課的啟示.

2.1" 教學重難點的確定

數學教學思維導向注重對學生數學思維的啟發和引領,指向未來的數學學習.“橢圓的標準方程”一課,是在已有學習的基礎上,進一步學習曲線方程的建立、推導和化解的過程,為后續拋物線、雙曲線的學習打下基礎.從這個意義出發,可以確定出本節課的其中一個教學重點是通過“橢圓的標準方程”的學習,掌握求曲線方程的一般步驟,即建系、設點、列出限制條件(根據定義列出曲線上任意一點需要滿足的條件)、代入特殊點的坐標、化解得到標準方程,所以有的老師把這五個步驟形象地簡稱為“建、設、限(現)、代、化”.

此外,“橢圓的標準方程”一課中“橢圓定義”是首次出現,“橢圓定義”的生成也是本節課的一個教學重點.至于本節課的教學難點,則是橢圓標準方程的推導.

2.2" 數學思想方法的挖掘

數學教學思維導向注重從思維方式、思想方法等方面對學生的數學思維進行引領和導向,因此,分析和挖掘一節課中蘊含的數學思想與方法就顯得至關重要了.

就“橢圓的標準方程”一課,首先可以從畫圓的方法(將一根沒有彈性的細線對折,用一支粉筆套在上面畫圓)出發,類比這個方法,提問學生“如果細線的兩端不重合,而是分開,畫出來的圖形可能是什么”,由此可以引出橢圓的定義.這里應用的就是類比思想.同時這樣的引入也符合思維導向理論中的“通過類比、關聯舊知、引出新知”理念.通過這個問題,可以引導學生發現舊知與新知的聯系,該問題的提出是具有方法論意義的.

在給橢圓下定義(到兩定點的距離之和等于定長)之后,為推導出橢圓的標準方程,首先要將橢圓的這個定義從文字語言翻譯成符號語言,即|MF1|+|MF2|=2a(2agt;|F1F2|),這里蘊含著抽象命題具體化、文字語言符號化等思想和方法.

在橢圓方程的推導過程中,從(x+c)2+y2+(x-c)2+y2=2a出發,通過移項—平方—化簡—再平方—整理,得到(a2-c2)x2+a2y2=a2·(a2-c2),再兩邊同時除以a2(a2-c2)得到x2a2+y2a2-c2=1.

圖1

接下來,令b2=a2-c2,得到x2a2+y2b2=1.這里的令b2=a2-c2,不是隨意為之,一方面是因為這里的b有實際意義,它是以a為斜邊、c為直角邊的直角三角形的另一直角邊(如圖1).

另一方面,這樣操作以后,橢圓方程變得更加簡潔、對稱,符合數學的簡潔美、對稱美的原則.更進一步說,橢圓方程最終化成標準方程(x2a2+y2b2=1)的形式,實際上也為下一步學習參數方程做好了準備,下一步只需要令xa=cos θ,yb=sin θ即可,這又進一步說明橢圓的標準方程與同角的正弦、余弦的平方和為1,甚至與勾股定理等知識的聯系.這種深挖知識間的聯系,聯系舊知,導向新知,指向學生未來發展的理念,是數學教學思維導向所倡導的重要理念之一.

3" 數學教學思維導向下“橢圓的標準方程”教學路徑設計

教學路徑,又稱為教學路線圖,是指將一節課的主要環節、基本過程、主要內容以及師生的主要活動等,用一張圖的形式畫出來.教學路徑的勾勒,有利于教師根據一節課的主要環節,快速地設計出一節課的大致路線,剩下的只需要耐心和進一步細化、完善每一個教學環節即可.

基于數學教學思維導向的理論,在第二部分對“橢圓的標準方程”一課做了較為詳細的分析.根據本節課的主體內容,結合以上論述,畫出“橢圓的標準方程”一課的教學路線圖(如圖2).

章頭教學,追根溯源,究其形狀,幾何畫板動態演示

類比:(探究活動)從畫圓→畫橢圓,類比圓的定義歸納橢圓的定義

抽象表達,概念剖析

建立適當的平面直角坐標系,明確橢圓的幾何條件|MF1|+|MF2|=2a

列表達式,化簡美化,平方→整理→再平方→整理→同除a2(a2-c2)→令b2=a2-c2

得橢圓標準方程x2a2+y2b2=1(a>b>0)

類比推理,完善方程

知識應用,解決問題

課堂小結,作業布置

圖2

4" 基于數學教學思維導向的橢圓標準方程推導的其他方法探究

根據以上聯系舊知、導向新知等數學教學思維導向理念,還可以得出橢圓標準方程的其他推導方法.

4.1" 利用等差數列的知識化簡方程

在明確橢圓的幾何條件,建立適當的平面直角坐標系后,得到如下表達式(x+c)2+y2+(x-c)2+y2=2a.此時,如果把(x-c)2+y2、a、(x+c)2+y2看作一個等差數列,并設其公差為d,則可得到(x-c)2+y2=a-d,

(x+c)2+y2=a+d,將兩式分別平方后作差,可得到4cx=4ad,即d=cxa,將其代入其中任意一個式子進一步化簡可得到(a2-c2)x2+a2y2=a2(a2-c2),后續推導步驟與上述討論一致.這里得到d=cxa后,即得到a-cxa(a-ex)、a+cxa·(a+ex),這就是所謂的焦半徑公式.

4.2" 利用二次曲線的一般方程進行推導

根據前面所學,圓的一般方程為x2+y2+Dx+Ey+F=0,這個方程實際上來源于二次曲線的一般方程(Ax2+By2+Cxy+Dx+Ey+F=0).在推導出橢圓的標準方程x2a2+y2b2=1以后,通過向學生介紹二次曲線的一般方程,并讓學生對比觀察后發現,可在二次曲線的一般方程中,令C、D、E等于0,而A、B、F不等于0.因此,只需求出Ax2+By2+F=0中的A、B、F,即得到橢圓的方程.因為橢圓與坐標軸的交點為(0,a2-c2)、(0,-a2-c2)、(a,0)、(-a,0),將其代入Ax2+By2+F=0,有" B(a2-c2)+F=0,

Aa2+F=0,即A=-Fa2,

B=-Fa2-c2,

有-Fa2x2+

-Fa2-c2y2+F=0.又F≠0,即x2a2+y2a2-c2=1,再令b2=a2-c2,同樣可得到焦點在x軸上的橢圓的標準方程x2a2+y2b2=1.[2]這種推導方法,是讓學生通過比較二次曲線的一般方程和橢圓的標準方程后,重新用新的方法推導橢圓的標準方程.從數學思想方法的角度看,這是待定系數法的成功運用.這樣的教學,指向未來的數學學習,有利于學生掌握知識之間的聯系,促進學生知識的系統化和思維的靈活化.

教育是慢的藝術,學生數學思維的發展,需要教師的啟發和引導.學習者往往是摸著石頭過河,不斷試誤,逐步成功.數學教學思維導向的理念,要求數學教師對學生從思維方式、思想方法等方面進行引領和導向.以上關于“橢圓的標準方程”一課的相關問題的討論,以及理論思考后的教學實踐,再一次證明了數學教學思維導向的理論在教學實踐中具有較好的指導意義.

參考文獻

[1]楊孝斌.數學教學思維導向的研究[M].成都:四川大學出版社,2010.

[2]盧連偉.“橢圓的標準方程”教學設計[J].高中數學教與學,2021(8):29-31.

猜你喜歡
教學設計
新理念 新模式 新方法
新課程標準中關于“數的運算”的教學設計
基于電子白板的《電流和電源》教學設計
以實驗為基礎的高中化學教學設計
探究如何著眼未來優化初中數學教學設計
淺談翻轉課堂教學模式在《Flash動畫》課程的應用
《電氣工程畢業設計》 課程的教學設計
考試周刊(2016年79期)2016-10-13 23:26:02
高中數學一元二次含參不等式的解法探討
考試周刊(2016年79期)2016-10-13 22:17:05
“仿真物理實驗室” 在微課制作中的應用
考試周刊(2016年77期)2016-10-09 11:49:00
翻轉課堂在高職公共英語教學中的應用現狀分析及改善建議
考試周刊(2016年76期)2016-10-09 09:18:59
主站蜘蛛池模板: 手机在线看片不卡中文字幕| 亚洲三级视频在线观看| 亚洲精品麻豆| 午夜免费视频网站| 久久精品无码一区二区日韩免费| 日韩一区精品视频一区二区| 亚洲AV永久无码精品古装片| 欧美国产日韩一区二区三区精品影视| 国产91成人| 毛片网站在线看| 91黄视频在线观看| 成人午夜视频在线| 亚洲黄网在线| av天堂最新版在线| 国产午夜看片| 日韩大片免费观看视频播放| 亚洲中字无码AV电影在线观看| 欧美成人A视频| 国产日韩丝袜一二三区| 小13箩利洗澡无码视频免费网站| 中文字幕在线观| 亚洲黄色片免费看| 国产精品视频导航| 天天摸天天操免费播放小视频| 99无码熟妇丰满人妻啪啪| 永久免费精品视频| 免费国产黄线在线观看| www.91中文字幕| 欧美三級片黃色三級片黃色1| 久久这里只精品热免费99| 99热这里只有精品久久免费| 蜜桃臀无码内射一区二区三区| 国产在线视频导航| 久草性视频| 国产成人久久777777| 日本少妇又色又爽又高潮| 免费毛片全部不收费的| 日韩专区欧美| 岛国精品一区免费视频在线观看 | 亚洲国产精品无码AV| 免费在线a视频| 免费观看无遮挡www的小视频| 91色爱欧美精品www| 99久久这里只精品麻豆| 无码久看视频| www成人国产在线观看网站| 免费一级毛片完整版在线看| 国产网友愉拍精品视频| 特级aaaaaaaaa毛片免费视频 | 在线另类稀缺国产呦| 蜜臀AV在线播放| 久久a毛片| 色偷偷男人的天堂亚洲av| 精品视频在线观看你懂的一区| 久久久久国产一区二区| 中文字幕调教一区二区视频| 国产成人综合久久| 男人天堂亚洲天堂| 午夜日b视频| 亚洲性视频网站| 国产黄色视频综合| 亚洲国产天堂久久九九九| 亚洲狠狠婷婷综合久久久久| 欧美成人免费午夜全| 日本一区高清| 中文无码日韩精品| 欧美亚洲国产一区| 九九视频免费看| 国产在线视频二区| 久久精品只有这里有| 国产视频资源在线观看| 国内嫩模私拍精品视频| 亚洲精品第五页| 精品自拍视频在线观看| 欧美一区中文字幕| 日韩精品亚洲人旧成在线| 国产主播喷水| 日日拍夜夜操| 无码中文字幕加勒比高清| 19国产精品麻豆免费观看| 国产小视频免费观看| 日韩欧美国产另类|