王紅
摘要:想要學好數學首先要學好的是數學的運算能力,培養數學的運算能力能夠讓學生運算的更準確,運算的速度更快思考的速度也越快,做題的效率也就越高,不僅僅做的快,還能做的對,多做些新穎性的題能發散學生的思維,對如何提升運算能力,思考出相應的對策,研究新的方法,運算能力如果有著極大的進步,就能促進數學教學質量進一步提高。
關鍵詞:初中數學;運算能力;提升研究
數學想要提高就要學習包括很多個方面的知識,其中比較重要的一種就是培養數學的運算能力,運算能力不是一下就能提高的,需要我們花時間去運算,把每次自己運算容易出錯的地方找到,每次改正一點點,慢慢的進步,一段時間后就會發現自己提升了一大步,運算能力的提高是靠準確度,然后在來運算快通過正確的方法和途徑持續訓練,總能提高。
1影響數學運算能力的因素
運算能力的體現有很多因素,但是運算不行,一般都會歸咎于不小心,或者看錯了之類的其實不然,我覺得主要問題大多體現在學運算的時候沒有把每一步落實到地方,檢驗的過程沒有,在草稿紙上的過程也沒有,知道了正確的方法卻沒有運用落實到實處,沒有融匯貫通的過程是不行的,所以在教學過程一定不能松懈,檢查學生的每一個過程,才會提高數學運算能力。
學生的記憶出現問題,公式要么記錯要么忘記了,當記憶不清的時候可以拿出求根公式,反復多次的進行推導找出正確的公式,就算記憶出現問題,我們只要記得前面的因素就能夠自然而然的推導出來,不僅能夠加強記憶,還能加快思維的運轉,只記得公式有的時候思維可能就會僵化,需要以不同的方式鍛煉,嘗試那些不同答案的題,做些新穎性的題目發散學生的思維,讓學生的思維自由的馳騁,這樣就不會被現有的思維局限,碰到不常規的題目就能夠學會思考把握思考的方向最終也會想出來,有的時候就能夠把知識聯系起來在一定程度上促進了數學的進一步學習。有理數的計算能夠為以后的一元一次方程做好鋪墊,進一步增強數學的學習,合并同類項和有理數的計算有著一定的相似性要學好前面的基礎內容才能能好的提高自己,把數學融匯貫通的學習只有這樣才能學的更好。沒次的內容都學的很好,所有的內容結合形成一個整體,數學成績飛速提升。
2提升數學教學的應用策略
數學是一門基礎科學,考試也是以準確度為準的,這也是我們為什么要重視數學的基礎教學。基礎就像是建房子的地基只有把地基打牢了才能建更高的樓,只有更牢的基礎才能學的更好,每一層高樓都是通過一塊一塊的磚頭搭建的,沒有每一步的積累是不會建起高樓的。學習基礎知識是為了更好學習以后的知識,基礎已經鞏固好了高樓才能慢慢建。在一遍遍的鞏固學習中,印象就會越來越深刻。解方程的過程中每一步的步驟都要學習,跟著步驟一步一步來,熟悉每一步步驟先去分母后去括號再合并同類項最后把系數化為一,不能把順序顛倒,多做幾次熟悉過程,嚴謹的步驟才可以得出正確的答案。要把一個數的平方和一個整個數的平方分辨出來,清晰地分辨其中的不同,快速的計算得到答案,既不容易出錯讓數學又上一個臺階。
3發散思維。多種方法提升數學能力
在教學過程中我們可以用不同的方式和方法去找些新穎的題目發散學生的思維開啟學生的大腦風暴,還能夠找些有啟發性的,沒有標準答案的題目來增加學生的思考性,通過這些開拓性的方法鍛煉數學的思維,這種情況下雖然學生考試能力不一定提升了,但是學生解決問題的能力得到了十足的進展,對其運用數學解決生活中的問題的能力有著極大提高學會應用數學。數學是來源于生活中的也是應用于生活中的,可以在生活中運用數學運算的能力,比如買東西等生活小事就能體現出來,多找幾家商店思考怎樣才能買到性價比最高的東西。這樣把數學融入生活中,無意識的鍛煉數學把數學運算能力發揮到極限,不斷地在生活中練習,才能成就卓越的數學能力。
4針對缺點。強化訓練
每個人都會有自己不足的地方,學習數學也是一樣的,要根據自己不會的地方,多次強化訓練找些特定的式子盡量完善自己,理解公式的含義,還能根據公式表述的不同,靈活的運用公式找到合適的運算方法,能夠簡化運算,多次強化訓練進一步提高思維能力提。高運算的便捷性。加快數學計算的能力,就能夠在特定的地方減去繁瑣的步驟,方便數學的運算。
還可以增加邏輯思維題,增加推理性讓學生覺得有趣,特別是多找難度大一點的題,需要多次推理的題目加大邏輯的推理難度讓學生碰到更大的困難這樣不僅提高了他們的心理素質還讓他們對數學的邏輯更進一步強化,把題目先易后難排列,如果能做來就能增加學生解決問題后的喜悅的心情,就像在黑夜中看到光明如果能夠做來學生就會感到克服困難的喜悅之情,學生對數學的興趣也大大增加。
總結:數學的學好不是一朝一夕的事情,運算能力的提高也不是一蹴而就的,首先要打下堅實的基礎,然后多通過創新訓練發散學生的思維,還需要裨補缺漏針對自己的缺點強化訓練把自己的缺點找出來并且彌補,完善自己的缺點沒有漏洞才算強大,這是提高數學運算能力的幾個方面的策略。