999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一道有特殊條件的四邊形問題解法探究

2025-08-03 00:00:00桑怡晴
中學數學·初中版 2025年6期
關鍵詞:平分線過點直角三角形

1原題呈現

如圖1,四邊形ABCD 中,AB=CD ∠ABC+∠BCD=270°. (1)求 ∠A+∠D 的度數;(2)連接 AC ,若 ∠ACB= 45° ,求證: BC2+2AC2=AD2

圖1

(3)E,F 分別為線段BC和 AD 上的點, G 是線段 EF 上任意一點,且 ΔGAB 和 ΔGCD 的面積相等,過點 D 作 DH⊥EF ,交直線 EF 于點 H ,連接 AH .若AD=4 ,求 AH 的最小值.

2試題分析

(1)根據四邊形的內角和求解即可.

(2)平方和一般與勾股定理相結合,而 BC,AC 與直角三角形沒有聯系,解題陷入僵局.此時,分析條件與前面的結論是調整思路的一個策略.由 AB=CD ,∠BAD+∠D=90° ,我們可以考慮以 CD 為邊作一個新三角形與 ΔABC 全等.于是過點 D 作 DG⊥AC 交AC 的延長線于點 G ,在 DG 的延長線上截取 DF= AC .連接 CF ,易證得 ΔABC?ΔCDF ,則 ∠F= ∠ACB=45° CF=BC ,從而 根據 AG2+DG2=AD2 ,可以得到 ,進一步得出結論.

第二種解題思路,構造全新的直角三角形,使其三邊分別等于 .怎樣實現這一目標?將 ΔACD 繞點 c 順時針旋轉 90° 得 ΔECF ,連接 AE ,AF ,得到 ΔAEF ,則 EF=AD ;再證明四邊形 ABCF 為平行四邊形,則 AF=BC ;由旋轉容易證得等腰直角三角形 CAE ,則 問題獲解.

(3)考慮到 ∠A+∠D=90° ,延長 AB,DC ,交于點 X ,可得 ∠AXD=90° ,審視已知條件 AD=4,AD 所對的角是不變的,容易作出 RtΔADX 的外接圓,從而得出點 X 在以 AD 為直徑的圓 o 上運動.根據ΔGAB 和 ΔGCD 的面積相等, AB=CD ,結合三角形面積,可知 AB,CD 邊上的高相等,進而由“角平分線上的點到角兩邊的距離相等”的逆定理,推出 EF 在∠AXD 的角平分線上.設 EF 交圓 O 于點 W ,運用圓的性質“同圓中,相等的圓周角所對的弧相等”,可推出 W 是半圓弧 AWD 的中點.進一步運用圓的性質、等腰直角三角形、輔助圓等,得 進而推出點 H 在以DW為直徑的圓 I 上運動,連接AI ,交 ?I 于點 H ,則 AH 最小,解三角形 ADI ,進一步得出結果.

3試題解答

(1)解:在四邊形 ABCD 中,

: ?∠A+∠D+∠ABC+∠BCD=360°, ∠ABC+∠BCD=270°

: ∴∠A+∠D=360°-(∠ABC+∠BCD)=90°. (204號(2)證法一:如圖2,過點 D

作 DG⊥AC 交 AC 的延長線于點

G ,在 DG 的延長線上截取 DF=

AC ,連接 CF : ∠DAC+∠ADC ∠CDG=90° ,∠BAD+∠ADC=90°, ·∠CDF=∠BAC

又 AB=CD ,

! ?ΔABC?DCF(SAS)

·∠F=∠ACB=45°,CF=BC.

(20號

: ∠AGD=90°

∴AG2+DG2=AD2

∴(AC+CG)2+(DF-FG)2=AD2.

! ?BC2+2AC2=AD2

圖2

點評:以 AD 為邊的 RtΔADG ,其斜邊 AD 與所求證等式的一邊一致,因此只需證明 BC2+2AC2 與RtΔADG 的直角邊的平方和相等,采用線段的和差與代換進行計算即可得到結果.這種構造三角形全等與“算”相結合的幾何證明,有難度,需解題者有扎實的幾何功底和較強的目標意識及探究精神.

證法二:如圖3,將 ΔACD 繞著點 c 順時針旋轉 90° 得到ΔECF ,連接 AE,AF ,由旋轉性質得 CF=CD ,而 AB=CD ,則AB=CF :

由旋轉性質得 CA=CE , 圖3∠ACE=90° ,則 : ∠ABC+∠BCD=270°,∠ ∠FCD=90° : .∠ABC+∠BCF=180° ·.AB//CF :四邊形 ABCF 為平行四邊形.: .AF=BC ·.∠FAC=∠ACB=45°. 又 ∠EAC=45° : ∠EAF=90° ∴AF2+AE2=EF2 : ∴BC2+2AC2=AD2.

點評:此法通過旋轉,將要證明的每條線段進行轉移.其中 AD 與 容易處理,證明 BC=AF ,∠EAF=90° 是解題的關鍵.這需要借助條件中的 270° 及已知的等線段、旋轉線段來共同作用,突破思維節點.

(3)解:如圖4,延長 AB,DC ,交于點 X ,由(1)知∠BAD+∠CDA=90°. (204: ∠AXD=90° ∴點 X 在以 AD 為直徑的圓 O 上運動.: ΔGAB 和 ΔGCD 的面積相等, AB=CD ,

∴點 G 到 AB 與 CD 的距離 相等. :點 G 在 ∠AXD 的角平分 線上. 又 G 是 EF 上任意一點, : EF 在 ∠AXD 的角平分 線上.

圖4

設 EF 交圓 O 于點 W ,則 ∠AXE=∠DXF ∴W是半圓弧 AWD 的中點. : DH⊥EF .∴點 H 在以 DW 為直徑的圓 I 上運動.連接 AI ,交 ?I 于點 H ,當 A,H,I 三點共線時,AH 最小.過點 I 作 IV⊥AD 于點 V ,則 ∠ADW=45° (2號 : ?AV=AD-DV=4-1=3. : (204: AH 的最小值為

點評:此問難度大,綜合性強,考查學生對基礎知識的靈活運用與知識的轉化能力.首先,要能夠根據條件畫出符合題意的圖形.其次,要思考題目的條件或前問的結論能不能直接運用,對解題是否有推動作用.由∠A+∠D 的度數,自然想到延長 AB,DC ,得到直角三角形.運用基礎知識、方法將知識轉化為技能,將解題不斷向前推進.結合 AD 為定長線段, AD 所對的角為 90° ,聯想“定弦定角”模型,作出輔助圓.進一步由等底等面積三角形得高相等,聯系角平分線,過渡到等孤,再次運用“定弦定角”基本圖形作出輔助圓,運用“穿心模型”求得最值.

本文中給出的四邊形的情景較陌生,但對學生來說都是公平的.解答本題,學生需要有扎實的幾何基礎與解題技能,更重要的是要具有能夠利用基礎知識、技能進行轉化進而解決問題的數學素養.現在的考題,檢驗的是將知識技能應用于真實情景的水平.平時老師教的知識、技能只是學生學習的階段性目標,是通向素養的手段.學生學習的終極目標是在不同情景中,擁有運用知識與技能的決策能力,擁有處理問題的內在潛質,擁有處理復雜問題的態度與決心,從而將這種素養內化成處理任何問題的能力.

猜你喜歡
平分線過點直角三角形
洞悉圖形結構,探究解題思路
拓展模型 學以致用
巧用坐標法解等腰直角三角形存在性問題
一道中考壓軸選擇題的解法探究與教學反思
探究銳角三角函數在實際生活中的應用
明晰線段中點與角平分線的幾何真諦
一個幾何不等式的逆向及加強
基于“胡不歸”困境的多例題分析研究
激發學生主動性 實現復習高效率
求線段旋轉后動端點的坐標的解法
主站蜘蛛池模板: 亚洲人在线| 国产真实乱了在线播放| 久久鸭综合久久国产| 欧洲日本亚洲中文字幕| 毛片三级在线观看| 97久久精品人人| 99精品伊人久久久大香线蕉| a毛片在线免费观看| 亚洲一级无毛片无码在线免费视频 | 乱人伦视频中文字幕在线| 理论片一区| 国产精品无码久久久久AV| JIZZ亚洲国产| 免费看黄片一区二区三区| 亚洲欧洲国产成人综合不卡| 国产精品人莉莉成在线播放| 在线看AV天堂| 精品亚洲欧美中文字幕在线看| 熟女日韩精品2区| 好久久免费视频高清| 91国内外精品自在线播放| 亚洲第一黄色网| 国产乱人伦精品一区二区| 四虎永久免费网站| 天天综合色天天综合网| 精品综合久久久久久97超人该| 国产在线精彩视频二区| 国产白丝av| 免费中文字幕一级毛片| 成人年鲁鲁在线观看视频| 日韩在线永久免费播放| 久久精品中文字幕少妇| 在线a视频免费观看| 成人夜夜嗨| 国产爽妇精品| 国产午夜一级淫片| 久久香蕉国产线看精品| www亚洲天堂| 亚洲精品欧美日本中文字幕| 97超碰精品成人国产| 精品撒尿视频一区二区三区| 国产高颜值露脸在线观看| 亚洲视频欧美不卡| 又粗又硬又大又爽免费视频播放| 国产亚洲日韩av在线| 久久一本日韩精品中文字幕屁孩| 国产日韩欧美在线视频免费观看| 久久久久青草线综合超碰| 成人国产小视频| 国产高清毛片| 91免费精品国偷自产在线在线| 免费无码一区二区| 亚洲精品无码av中文字幕| 日韩精品成人在线| 日本精品视频| 亚州AV秘 一区二区三区| 免费福利视频网站| 青青青国产视频手机| 亚洲成a人片| 在线观看国产黄色| 狠狠色丁香婷婷综合| 国产丝袜丝视频在线观看| 日本亚洲成高清一区二区三区| 小13箩利洗澡无码视频免费网站| 国产成人AV综合久久| 免费高清a毛片| 欧美中文字幕在线视频| 久久亚洲中文字幕精品一区| 中文字幕色在线| 国产美女免费网站| 色综合手机在线| 黄色免费在线网址| av午夜福利一片免费看| 亚洲欧洲自拍拍偷午夜色无码| 久久精品这里只有精99品| 成人免费黄色小视频| 亚洲天堂首页| 亚洲人成网站日本片| 亚洲中文字幕久久无码精品A| 91成人免费观看在线观看| 人妻精品全国免费视频| 免费无码在线观看|