黃夏秋





摘 要: 近年來,隨著我國新課程的逐步深入,在具體教學中對教育工作者使用的教學方法提出更高的要求,多數教育工作者對教學方法展開深入研究。高中數學函數章節貫穿整個高中數學學習過程,也是學生學習的重點和難點部分。本文主要分析與探討數學思想方法在高中數學函數章節中的全面滲透。
關鍵詞: 數學思想方法 高中數學 函數章節 應用策略
在高中數學函數教學中運用數學思想方法,有助于學生構建完善的知識體系,提高學生解決問題的能力。文中根據高中數學教學例題,對高中數學函數教學過程中滲透分類討論、化歸、數形結合等思想,不斷提高學生的數學思維能力,為日后學習復雜的知識奠定堅實的基礎。
一、數學思想方法的涵義及其重要意義
數學思想方法是指針對某一數學問題的分析及探索過程,形成最佳的解決問題的思想,也為準確、客觀分析、解決數學問題提供合理、操作性強的方法。函數是高中數學的主要內容,也是考試的重點。高中數學學習過程中遇到函數的題目,復習時必須有針對性地了解高考常見命題和要點,重點進行復習,做到心中有數。將數學思想方法當做數學基礎知識也是新課標提出的,新課標規定在教學過程中,要重視滲透數學思想方法。高中數學函數教學中應用數學思想方法是推進全面素質教育的重要手段。目前,從歷年高考的試題來看,高考考試的重點是查看學生對所學知識的靈活應用及準確性。數學科目考查的關鍵點是學生數學思想方法及解題能力。因此,高中函數教學中應用數學思想方法發揮著重要作用。
二、高中數學函數章節中應用數學思想方法的策略
(一)函數與方程思想的應用
函數與方程雖然是兩個不同的概念,但它們之間卻存在著密切聯系,方程f(x)=0的根就是函數y=f(x)的圖像與x軸的交點的橫坐標。通過方程進行研究,許多有關方程的問題可以用函數的方法解決。反之,許多函數問題也可以用方程的方法解決。
解析:這是一道較典型的函數與方程例題,老師根據數學思想的要求傳授學生解題方法,也可以依據這一道例題對其他相關例題的解題方法進行概括性講授,確保學生遇到這類題目可以快速、準確地找出解題方法。
本例題構造出函數g(x),再借助函數零點的判定定理解題非常容易。這道例題展現出函數與方程的數學思想,實際解題時我們一般會構造一個比較熟悉的模式,從而將不熟悉的問題轉化為所熟悉的問題進行思考、解答。另外,我們還可以利用函數的圖像和性質,用二分法求方程近似解的方法,從中體會函數與方程之間的聯系,對拓展學生學習的深度和廣度具有重要意義。
(二)數形結合思想的應用
數形結合作為數學解題中比較常見的思想方法,其實質是將抽象的數學語言與直觀的圖像結合起來,關鍵是代數問題與圖形之間的相互轉化,它可以使代數問題幾何化,幾何問題代數化。
解析:數形結合思想是數學教學的重要思想之一,主要包括“以形助數、以數輔形”這兩方面的內容,求解幾何問題也是研究數形結合的重要手段。同時,在求解方程解的個數及函數零點問題中也能應用。以形助數和以數輔形可以讓繁雜的問題變得更直觀、形象,增強數學問題的嚴謹性和規范性。因此,某些問題從數量關系觀察無法入手解題時,如果將數量關系轉變為圖形,運用圖形的性質規律更直觀地描述數量之間的關系,從而將復雜的問題變得簡單。因此,對部分抽象的函數題目,數學教師應正確引導學生運用數形結合的思想方法,使得解題思路峰回路轉,變得清晰、簡單。
(三)化歸思想的應用
化歸思想是指將抽象、復雜的數學問題轉化成簡單、熟知、直觀的數學問題,提高解決問題的速度和準確性。函數章節中多數問題的解決都離不開化歸思想的應用,其中化歸思想是分析、解決問題的基本思想,從而提高學生的數學思維能力。
解析:這一例題解決過程將x<0轉換成-x>0展現出化歸的數學思想。化歸是一種最基礎、最重要的數學思想方法,高中數學老師必須熟悉化歸思想,有意識地利用化歸思想解決相關的數學問題,并將這種思想滲透到學生的思想意識中,有利于增強學生解決數學問題的應變能力,提高學生的數學思維能力。
(四)分類討論思想的應用
分類討論思想就是依據數學對象本質屬性的共同點與不同點,把豎向對象劃分成多個種類實施求解的一種數學思想。高中數學函數章節教學中使用分類討論思想方法,有利于學生形成縝密、嚴謹的思維模式,養成良好的數學品質。解決數學函數問題時,如果無法從整體角度入手解決問題,就可以從局部層面解決多個子問題,從而有效解決整體問題。
分類討論就是對部分數學問題,當所給出的對象不能展開統一研究時,必須依據數學對象本質屬性的特點,把問題對象劃分為多個類別,隨之逐類展開討論和研究,從而有效解決問題。高中數學函數教學中,經常根據函數性質、定理、公式的限制展開分類討論,問題內的變量或包含需要討論的參數時,必須實施分類討論。高中數學教學中,必須循序漸進地滲透分類思想,在潛移默化的情況下提高學生數學思維能力和解決問題的能力。
解析:本例題可以借助二次函數圖像解決,展現出分類討論的思想,討論對稱軸x=a與區間[0,2]的位置關系。對復雜的問題進行分類和整合時,分類標準與增設的已知條件相等,完成有效的增設,把大問題轉換成小問題,優化解題思路,降低解決問題的難度。分類討論教學方法要求將各類情況各種結果考慮其中,依次研究各類情況下可能出現的結果。求解不等式、函數和導數是考查分類討論思想的難點,為確保突出重點,日常教學中必須對學生滲透分類討論思想方法。
三、結語
高中數學函數章節是整個數學教學的重要部分,對其日后學習高等函數發揮著重要作用。高中數學函數知識涵蓋多種數學思想方法,數學思想方法是解決數學問題的鑰匙和重要工具,因此數學老師必須對函數實施合理教學,讓學生更全面地掌握數學思想方法,從而提高學生的綜合思維能力。
參考文獻:
[1]任瀟.高中數學函數教學中滲透數學思想方法的應用分析[J].現代婦女旬刊,2014,04:158-159.
[2]韓俊芳.數學思想方法教學在高一函數中的運用與實踐研究[D].北京師范大學,2008:15-16.