王希武
摘 要:“數(shù)形結(jié)合”是數(shù)學(xué)轉(zhuǎn)化思想的重要表現(xiàn),有助于教師更透徹地講解教學(xué)內(nèi)容,有助于學(xué)生對數(shù)學(xué)知識更好地理解和運用,無論是教師教學(xué)還是學(xué)生解題的過程中,它都發(fā)揮著重要的作用。淺析“數(shù)形結(jié)合”思想在小學(xué)數(shù)學(xué)課堂教學(xué)中的運用方法,培養(yǎng)學(xué)生在數(shù)學(xué)學(xué)習(xí)中善于運用“數(shù)形結(jié)合”的思維能力,以此來提高學(xué)生在學(xué)習(xí)與生活中對遇到的數(shù)學(xué)問題的解決能力。
關(guān)鍵詞:初中數(shù)學(xué);數(shù)形結(jié)合;運用方法
數(shù)量關(guān)系與空間形式,是數(shù)學(xué)研究的兩個主要內(nèi)容,如果將“數(shù)”與“形”分開研究,就會出現(xiàn)應(yīng)用范圍小、發(fā)展速度慢的情況。單純地去研究數(shù)學(xué)中的“數(shù)”,缺少直觀性的觀察與判斷,將很難對“數(shù)”有更深刻的理解;單純地去研究數(shù)學(xué)中的“形”,缺少細節(jié)性的數(shù)據(jù)對比,這也很難對“數(shù)”有更深入的研究。小學(xué)是學(xué)生數(shù)學(xué)學(xué)習(xí)的開始階段,應(yīng)該把“數(shù)”與“形”結(jié)合起來,作為一種數(shù)學(xué)思想來教學(xué)。充分發(fā)揮“數(shù)形結(jié)合”思想的作用,以此加強初中生對數(shù)學(xué)知識的理解與掌握,培養(yǎng)學(xué)生善于運用“數(shù)形結(jié)合”思維的能力。但如何把“數(shù)形結(jié)合”思想有效地應(yīng)用在初中數(shù)學(xué)課堂教學(xué)中,讓學(xué)生更好地去理解和運用呢?這成為所有數(shù)學(xué)教育工作者不得不思考的問題。
一、化抽象為具體,有助于學(xué)生對數(shù)學(xué)概念的理解
數(shù)學(xué)普遍是抽象的知識結(jié)構(gòu),而這些抽象的知識中,概念、公式更是千百年來眾多數(shù)學(xué)家的智慧濃縮,小學(xué)生的數(shù)學(xué)知識有限,對一些概念、公式的證明過程與思維過程難以理解。教師用“數(shù)形結(jié)合”的思想表示這些公式定理,就會讓學(xué)生更好地去理解和記憶。例如,正方形面積公式:S=邊長×邊長,這是學(xué)生以前學(xué)過的內(nèi)容,在“認識多邊形”一課中,需要把多邊形拆分成學(xué)生知道的圖形進行多邊形面積計算,但在一些例題中,多邊形拆分后只能得到正方形對角線的長度,讓學(xué)生求正方形的面積,這樣學(xué)生就要利用正方形的第二面積公式:S=對角線×對角線÷2,如何讓學(xué)生快速理解并熟練運用這個公式,教師在教學(xué)時就要用到數(shù)形結(jié)合的思想,把正方形轉(zhuǎn)化成三角形。
如圖1,把正方形按照對角線剪開,把上半部分順時針翻轉(zhuǎn)270°,得到圖2,一個等腰直角三角形,此三角形的面積就等于正方形的面積,即S=a×a÷2,也可以得到正方形的第二面積公式:S=對角線×對角線÷2。教師借助圖形的變化,把正方形轉(zhuǎn)變成小學(xué)生可以熟練運用的三角形面積公式,把抽象的數(shù)學(xué)概念圖形化,讓學(xué)生可以更直觀地理解,有助于學(xué)生對數(shù)學(xué)概念的掌握和運用,這樣學(xué)生可以更快速地去計算多邊形的面積,達到教學(xué)目的。
二、化繁瑣為簡單,有助于學(xué)生對數(shù)學(xué)情感的建立
小學(xué)數(shù)學(xué)應(yīng)用題中有非常繁瑣的數(shù)量關(guān)系式,一些思維邏輯能力差的學(xué)生,很容易把這些關(guān)系搞混,造成解題的錯誤,長此以往,學(xué)生對數(shù)學(xué)逐漸失去信心,產(chǎn)生消極的學(xué)習(xí)態(tài)度。因此,教師在小學(xué)數(shù)學(xué)教學(xué)過程中,要讓學(xué)生學(xué)會運用“數(shù)形結(jié)合”的思想去解題,讓繁瑣的數(shù)學(xué)變得簡單,用圖形培養(yǎng)學(xué)生良好的數(shù)學(xué)情感,增強學(xué)生數(shù)學(xué)學(xué)習(xí)的興趣。如題:一輛小卡車從A地向B地送貨,已知A地到B地是一個陡峭的地形,上坡的速度是20 km/h,平地的速度是30 km/h,下坡的速度是40 km/h,去的時候,平地用了2個小時,下坡用了4個小時,總共用了7個小時,求小卡車送完貨返回時要用多少時間。學(xué)生運用“數(shù)形結(jié)合”的思想畫圖解題,如圖3。
學(xué)生通過畫圖,可以分析出從B地返回A地時,下坡變成了上坡,上坡變成了下坡,因此,得到結(jié)論:與從A到B相比,B到A時,上下坡的路程都發(fā)生了變化,平地的路程沒有發(fā)生變化。通過畫圖,把復(fù)雜的關(guān)系直觀地呈現(xiàn)在學(xué)生面前,讓學(xué)生對題中的邏輯關(guān)系更為清楚,降低了此題的難度,學(xué)生在解題中也會獲得算出正確結(jié)果后的滿足感,增加了學(xué)生數(shù)學(xué)學(xué)習(xí)的趣味性,有助于學(xué)生數(shù)學(xué)情感的建立。
小學(xué)數(shù)學(xué)教學(xué)中滲透“數(shù)形結(jié)合”思想,既符合小學(xué)生數(shù)學(xué)的認知規(guī)律,有助于學(xué)生對數(shù)學(xué)概念的理解和掌握,又極大地增加了數(shù)學(xué)解題時的趣味性,有助于小學(xué)生數(shù)學(xué)情感的培養(yǎng)和建立。因此,教師在小學(xué)數(shù)學(xué)教學(xué)的過程中,要十分重視和培養(yǎng)學(xué)生對“數(shù)形結(jié)合”思想的運用和思維習(xí)慣,讓學(xué)生更好地去理解和運用,以此來提高學(xué)生在學(xué)習(xí)與生活中對遇到的數(shù)學(xué)問題的解決能力。
參考文獻:
[1]李文玲.“數(shù)形結(jié)合”思想在小學(xué)數(shù)學(xué)教學(xué)中的應(yīng)用分析[J].西部素質(zhì)教育,2016(1):173.
[2]蔣菲.小學(xué)數(shù)學(xué)教學(xué)中數(shù)形結(jié)合有效性的思考[J].小學(xué)科學(xué),2016.
編輯 謝尾合